Skip to main contentSkip to main content
You have permission to edit this article.
The costs of straying from optimal strategy

The costs of straying from optimal strategy

  • 0
Black Jack Cards

Not long ago, several readers relayed their reasons for straying from optimal strategy on certain plays. I let them tell their stories while deferring comment.

It’s my turn.

**A blackjack player, Justin, explained he skipped splitting or doubling down if it would force him to buy more chips. He sets his buy-in as his limit for a session and will not make any play that would force him beyond that limit.

I’m all for setting limits when you bet. Staying within your means and not betting money you can’t afford to lose is important.

You might try avoiding getting into the position where you can’t double down or split pairs without exceeding your limit. If I have $10 of my session bankroll remaining at a blackjack table with a $10 minimum bet, I’ll walk away rather than make one last bet.

If I’ve bet what I intend to be my last $10 and am dealt 8-8 against a 5, my average result is a loss if I stand or hit, but a win if I split. Disciplining myself to avoid buying more chips comes at a cost.

It gets tricky because you might pair up again and make a decision on a resplit, or draw a 3 to an 8 and want to double down.

My call would be to bend my limit and buy enough chips to cover splits or doubles for that hand, then walk away if I don’t win. But if it takes a harder limit to discipline yourself not to overspend, that’s your call. Bankroll discipline is laudable though it sometimes limits profit opportunities or even makes a one-hand loss more likely.

**Keri, a quarter video poker player who loves Ten Play, often plays 9-5 Double Double Bonus Poker. When dealt a full house that includes three Aces, she keeps just the Aces and discards the other pair on single-hand games, but holds the full house on Ten Play. She balks at forgoing a certain 450-quarter payoff and risk settling for 150 coins on 10 threes of a kind.

As with Justin’s blackjack bankroll dilemma, I understand Keri’s position, though I’d make a different choice. If she holds all 10 full houses on a quarter machine, she has a guaranteed $112.50. If she breaks up to full houses to draw to the Aces, she risks the payoff dropping to only $37.50.

That big drop is going to happen often. However, if she draws the fourth Ace in just one hand for an 800-coin pay, her total payback leaps to 935 coins, or $233.75. Occasionally, that fourth Ace will be accompanied by a 2, 3 or 4, boosting that hand to a 2,000-coin jackpot.

If that happens on one of the 10 hands, the total pay leaps to $533.75. Once in a blue moon, you’ll draw the fourth Ace, with or without the low kicker, on more than one hand.

The average return per hand if you break up a full house to hold three Aces is 63.58 coins per hand if the discarded pair s 5s or higher, or 61.36 if you discard two 2s, 3s or 4s. Either way, the average return dwarfs the flat 45 coins per hand on a full house.

I get that it’s difficult for a player who’s betting quarters to pass up a guaranteed return of $112.50. But the difference in reward potential is so high I’d take the risk. If you can’t afford the risk, preserving bankroll is a prime concern, but maybe it would be better the preserve bankroll by playing fewer hands at a time to reduce your wager.


Be the first to know

* I understand and agree that registration on or use of this site constitutes agreement to its user agreement and privacy policy.

Related to this story

Most Popular

Get up-to-the-minute news sent straight to your device.